\bigcirc PR MODEL SOLUTIONS
 Oxford Cambridge and RSA
 A Level Further Mathematics A
 Y540 Pure Core 1
 Sample Question Paper

 Accredited
Date - Morning/Afternoon

Time allowed: 1 hour 30 minutes

OCR supplied materials:

- Printed Answer Booklet
- Formulae A Level Further Mathematics A

You must have:

- Printed Answer Booklet
- Formulae A Level Further Mathematics A
- Scientific or graphical calculator

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided in the Printed Answer Booklet.
- Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{gm} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.

INFORMATION

- The total number of marks for this paper is 75 .
- The marks for each question are shown in brackets [].
- You are reminded of the need for clear presentation in your answers.
- The Printed Answer Booklet consists of 12 pages. The Question Paper consists of 8 pages.

Answer all the questions.

1 Show that $\frac{5}{2-4 \mathrm{i}}=\frac{1}{2}+\mathrm{i}$.

$$
=\frac{5}{2-4 i} \times \frac{2+4 i}{2+4 i}=\frac{10+20 i}{4+16}=\frac{10(1+2 i)}{20}
$$

$=(1 / 2+i)$ shown.
2 In this question you must show detailed reasoning.

The equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x^{4}+2 x^{3}+2 x^{2}+26 x+169$, has a root $x=2+3$ i.
(i) Express $\mathrm{f}(x)$ as a product of two quadratic factors.
$x=2+3 i$ is a root, $\therefore x^{*}=2-3 i$ is also a root.

$$
\Sigma x=2+3 i+2-3 i=4 \quad x x^{*}=13
$$

\therefore Quadratic factor $=x^{2}-4 x+13$
other quadratic factor: $\left(x^{2}+a x+13\right)$ \{ as $\left.13 \times 13=169\right\}$

$$
\begin{gathered}
\Rightarrow f(x)=\left(x^{2}-4 x+13\right)\left(x^{2}+a x+13\right) \\
\Rightarrow 13 a x-13 \times 4 x=26 \Rightarrow a=6 \\
\therefore f(x)=\left(x^{2}-4 x+13\right)\left(x^{2}+6 x+13\right)
\end{gathered}
$$

(ii) Hence write down all the roots of the equation $\mathrm{f}(x)=0$.

$$
\text { Roots: } 2 \pm 3 i,-3 \pm 2 i
$$

3 In this question you must show detailed reasoning.
The diagram below shows the curve $r=2 \cos 4 \theta$ for $-k \pi \leq \theta \leq k \pi w h e r e ~ k$ is a constant to be determined.

Calculate the exact area enclosed by the curve.
$r=0$ when $4 \theta= \pm \frac{\pi}{2} \Rightarrow k=\frac{1}{8}$

$$
\text { Area }=\frac{1}{2} \int_{-\frac{\pi}{8}}^{\pi / 8} r^{2} d \theta
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{-\pi / 8}^{\pi / 8} 4 \cos ^{2} 4 \theta d \theta \quad\left\{4 \cos ^{2} \theta=2(\cos 8 \theta+1)\right\} \\
& =\frac{1}{2} \int_{-\pi}^{8} 2(\cos 8 \theta+1) d \theta=\int_{-\pi}^{5 / 8} \\
& =\left[\theta+\frac{1}{8} \cos 8 \theta+1 d \theta\right. \\
& \sin 8]_{-\pi / 8}^{\pi / 8}=\left(\frac{\pi}{8}+0\right)-\left(-\frac{\pi}{8}+0\right)=\frac{\pi}{4}=
\end{aligned}
$$

4 Draw the region in an Argand diagram for which $|z| \leq 2$ and $|z|>|z-3 i|$.

5 (i) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sinh ^{-1}(2 x)\right)=\frac{2}{\sqrt{4 x^{2}+1}}$.

$$
\begin{gather*}
\frac{d}{d x}\left(\sinh ^{-1}(2 x)\right)=\frac{1}{\sqrt{x^{2}+\left(\frac{1}{2}\right)^{2}}}= \tag{2}\\
=\frac{2}{\sqrt{4 x^{2}+1}}
\end{gather*}
$$

shown.
(ii) Find $\int \frac{1}{\sqrt{2-2 x+x^{2}}} \mathrm{~d} x$.

$$
\begin{aligned}
& \Rightarrow \int \frac{1}{\sqrt{(x-1)^{2}+1}} d x \\
& =\sinh ^{-1}(x-1)+c
\end{aligned}
$$

$$
2-2 x+x^{2}
$$

$$
=(x-1)^{2}+1
$$

$6 \quad$ The equation $x^{3}+2 x^{2}+x+3=0$ has roots α, β and γ.
The equation $x^{3}+p x^{2}+q x+r=0$ has roots $\alpha \beta, \beta \gamma$ and $\gamma \alpha$
Find the values of p, q and r.

$$
\sum \alpha=-2=-\frac{b}{a} \quad \sum \alpha \beta=1=\frac{c}{a} \quad \sum \alpha \beta \gamma=-3=-\frac{d}{a}
$$

$$
\begin{aligned}
-p & =\alpha \beta+a \gamma+\beta \gamma=\sum \alpha \beta=1 \quad \therefore-p=1 \Rightarrow p=-1 \\
q & =\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}=\alpha \beta \gamma(\alpha+\beta+\gamma) \\
& =-3(-2)=6=q \quad \therefore q=6 \\
-r & =\alpha^{2} \beta^{2} \gamma^{2}=(\alpha \beta \gamma)^{2}=9 \quad \therefore r=-9
\end{aligned}
$$

$$
\therefore p=-1, q=6, r=-q
$$

7 The lines l_{1} and l_{2} have equations $\frac{x-3}{1}=\frac{y-5}{2}=\frac{z+2}{-3}$ and $\frac{x-4}{2}=\frac{y+2}{-1}=\frac{z-7}{4}$.
(i) Find the shortest distance between l_{1} and l_{2}.

$$
\begin{aligned}
& l_{1}=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
2 \\
-3
\end{array}\right) \quad l_{2}=\left(\begin{array}{c}
4 \\
-2 \\
7
\end{array}\right)+\mu\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right) \\
& \text { Distance }=\frac{|\overrightarrow{A P} \cdot(\lambda \times \mu)|}{1 \lambda \times \mu \mid} \quad\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right) \times\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right)=\left(\begin{array}{c}
5 \\
-10 \\
-5
\end{array}\right) \\
& \overrightarrow{A P}=\left(\begin{array}{c}
1 \\
-7 \\
5
\end{array}\right) \Rightarrow D \text { istance }=\frac{\left(\begin{array}{c}
1 \\
-7 \\
5
\end{array}\right) \cdot\left(\begin{array}{c}
5 \\
-10 \\
-5
\end{array}\right)}{\sqrt{2 \times 5^{2}+10^{2}}}=\sqrt{6} \\
& \text { (ii) Find a cartesian equation of the plane which contains } 4 \text { and is parallel to } b \text {. }
\end{aligned}
$$

[2]
$\left(\begin{array}{c}5 \\ -10 \\ -5\end{array}\right)$ is the vector parallel to both l_{1} and l_{2}

$$
\therefore \text { Eqn. }=5 x-10 y-5 z=d
$$

Sully point $(3,5,-2) \Rightarrow 15-50+10=d$

$$
\begin{aligned}
\Rightarrow d & =-25 \\
\therefore 5 x-b y-5 z=-25 & \Rightarrow x-2 y-z=-5
\end{aligned}
$$

(ii) Determine the values of p and k for which there are an infinity of solutions to the following simultaneous equations.

| $x+y+z$ | $=3$ | |
| ---: | :--- | ---: | :--- |
| $2 x+4 y+5 z$ | $=$ | 9 |
| $7 x+11 y+$ | | $=3$ |

$$
\begin{aligned}
M & =\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 5 \\
7 & 11 & p
\end{array}\right) \quad M \text { is singular, } \therefore \operatorname{Det} M=2 p-26=0 \\
& \Rightarrow p=13
\end{aligned}
$$

If ∞ no. of solutions \Rightarrow sheaf \therefore consistent eqne .
Solving (1), (2), (3):

$$
\begin{aligned}
7(1)-3 \Rightarrow\{x+7 y+7 z & =21 \\
7 x+11 y+13 z & =k
\end{aligned}
$$

$$
\begin{aligned}
& 7 x+11 \int_{1}+13 z=k \\
& , \quad, \quad
\end{aligned}
$$

$$
\frac{(-)(-)(-) \leftrightarrow}{-4 y-6 z=21-k}
$$

$$
\begin{aligned}
& \begin{array}{l}
2 x+2 y+2 z=6 \quad 2(1)-(2)
\end{array} \\
& \begin{array}{r}
2(x+4 y+5 z=9 \\
(-1-1)(-) \\
\hline-2 y-3 z=-3 \\
2 y+3 z=3
\end{array} \\
& \text { For consistency: } \\
& \Rightarrow 21-k=-2 \times 3 \\
& \Rightarrow K=27
\end{aligned}
$$

$$
\begin{align*}
& 8 \text { (i) Find the solution to the following simultaneous equations. } \\
& \begin{aligned}
x+y+z & = & 3 \\
2 x+4 y+5 z & = & 9 \\
7 x+11 y+12 z & = & 20
\end{aligned} \\
& \left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 5 \\
7 & 11 & 12
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
9 \\
20
\end{array}\right) \tag{2}\\
& \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 5 \\
7 & 11 & 12
\end{array}\right)^{-1}\left(\begin{array}{c}
3 \\
9 \\
20
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
7 & 1 & -1 \\
-11 & -5 & 3 \\
6 & 4 & -2
\end{array}\right)\left(\begin{array}{c}
3 \\
9 \\
20
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
10 \\
-18 \\
14
\end{array}\right) \Rightarrow x, y, z=(5,-9,7)
\end{align*}
$$

9 Prove by induction that, for all positive integers n,

$$
\sum_{r=1}^{n} \frac{5-4 r}{5^{r}}=\frac{n}{5^{n}} .
$$

Proving true for $n=1 \sum_{r=1}^{1} \frac{5-4}{5}=\frac{1}{5}$

$$
\text { RHS }=\frac{1}{5^{\prime}}=\frac{1}{5} \quad \text {.true for } n=1
$$

Assuming true for $n=k$, ie. $\sum_{r=1}^{n} \frac{5-4 r}{5^{r}}=\frac{k}{5^{n}}$
Checking for $n=k+1$:

$$
\begin{aligned}
\Rightarrow \sum_{r=1}^{k+1} \frac{\sum_{r=1}^{k+1}=\sum_{r=1}^{k}+\sum_{r=k+1}^{k+1}}{5^{r}} & =\frac{k}{5^{k}}+\frac{5-4(k+1)}{5^{k+1}} \\
& =\frac{k}{5^{k}}+\frac{1-4 k}{5^{k+1}} \\
& =\frac{5 k+1-4 k}{5^{k+1}} \\
& =\frac{k+1}{5^{k+1}} \text { as needed }
\end{aligned}
$$

\therefore If true for $n=k$, it's true for $n=k+1$ and because it's true for $n=1$, it must le true for $n \in \mathbb{Z}^{+}$by mathematical induction.

10 The Argand diagram below shows the origin O and pentagon $A B C D E$, where A, B, C, D and E are the points that represent the complex numbers a, b, c, d and e, and where a is a positive real number You are given that these five complex numbers are the roots of the equation $z^{5}-a^{5}=0$.

(i) Justify each of the following statements.
(a) A, B, C, D and E lie on a circle with centre O.

All roots satisfy $\left|z^{5}\right|=a^{5} \Rightarrow|z|=a$
(b) $A B C D E$ is a regular pentagon.

All points are distance a from 0 . Each root is a $\operatorname{Cis}\left(\frac{2 k_{x}}{5}\right)$, hence spaced at intervals of $\frac{2 \pi}{5}$ around
(c) $b \times \mathrm{e}^{\frac{2 i \pi}{5}}=c$ Circle.

$$
\begin{align*}
\arg \left(b \times e \frac{2 \pi i}{5}\right) & =\arg (b)+\arg \left(e^{\frac{2}{5} \pi i}\right) \tag{1}\\
& =\frac{4}{5} \pi=\arg (c)
\end{align*}
$$

(d) $b^{*}=e$

$$
\begin{equation*}
b^{*}=e \operatorname{cis}\left(-\frac{2 \pi}{5}\right)=\operatorname{cis}\left(\frac{8 \pi}{5}\right)=e \tag{1}
\end{equation*}
$$

(e) $a+b+c+d+e=0$
a, b, c, d, e are roots of $z^{s}-a^{s}=0 \ldots$ Sun $\delta G a, b^{[2]}, c$, $d, e=-\frac{0}{1}=0$.
(ii) The midpoints of sides $A B, B C, C D, D E$ and $E A$ represent the complex numbers p, q, r, s and t.

Determine a polynomial equation, with real coefficients, that has roots p, q, r, s and t.
All roots have mag. $a \cos \frac{\pi}{5}$

All roots are spaced at angles of $\frac{2 \pi}{5}$. r is negative real roast $\Rightarrow z^{3}+\left(a \cos \frac{\pi}{5}\right)^{5}=0$.

11 A company is required to weigh any goods before exporting them overseas. When a crate is placed on a set of weighing scales, the mass displayed takes time to settle down to its final value.

The company wishes to model the mass, $m \mathrm{~kg}$, which is displayed t seconds after a crate X is placed on the scales.
For the displayed mass it is assumed that the rate of change of the quantity $\left(0.5 \frac{\mathrm{~d} m}{\mathrm{~d} t}+m\right)$ with respect to time is proportional to $(80-m)$.
(i) Show that $\frac{\mathrm{d}^{2} m}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} m}{\mathrm{~d} t}+2 k m=160 k$, where k is a real constant.

$$
\frac{d}{d t}\left(0.5 \frac{d m}{d t}+m\right)^{d}=k(80-m)
$$

$$
\begin{aligned}
& 0.5 \frac{d^{2} m}{d t^{2}}+\frac{d m}{d t}=80 \mathrm{k}-\mathrm{km} \Rightarrow \frac{d^{2} m}{d t^{2}}+2 \frac{d m}{d t}=60 \mathrm{k}-2 \mathrm{~km} \\
& \Rightarrow \frac{d^{2} m}{d t^{2}}+2 \frac{d m}{d t}+2 \mathrm{~km}=160 \mathrm{k} \quad \text { shown. }
\end{aligned}
$$

It is given that the complementary function for the differential equation in part (\mathbf{i}) is $\mathrm{e}^{\lambda}(A \cos 2 t+B \sin 2 t)$, where A and B are arbitrary constants.
(ii) Show that $k=\frac{5}{2}$ and state the value of the constant λ

$$
\begin{aligned}
& \text { Show that } k=\frac{5}{2} \text { and state the value of the constant } \lambda \\
& \text { A.E. } n^{2}+2 n+2 k=0 \Rightarrow n=\frac{-2 \pm \sqrt{4-8 k}}{2} \\
& =-1 \pm \sqrt{1-2 k} \\
& \text { as } A \cos 2 t+B \sin 2 t \Rightarrow 1-2 k<0 \\
& \Rightarrow \sqrt{2 k-1}=2 \Rightarrow k=\frac{5}{2} \Rightarrow \lambda=-1
\end{aligned}
$$

When X is initially placed on the scales the displayed mass is zero and the rate of increase of the displayed mass is $160 \mathrm{~kg} \mathrm{~s}^{-1}$.
(iii) Find m in terms of t.

$$
\frac{d^{2} m}{d t^{2}}+2 \frac{d m}{d t}+5 m=400
$$

let $m=\mu \Rightarrow 5 \mu=400 \Rightarrow \mu=80$
as P.I. $\frac{d^{2} m}{d t^{2}}=\frac{d m}{d t}=0$

$$
\begin{aligned}
m= & e^{-t}(A \cos 2 t+B \sin 2 t)+80 \\
& \text { at } t=0 \quad m=0 \quad \therefore A=-80 \\
\frac{d m}{d t}= & -e^{-t}(-80 \cos 2 t+B \sin 2 t)+e^{-t}(-2(8) \sin 2 t+2 B \cos 2 t) \\
& @ t=0 \quad \frac{d m}{d t}=160 \therefore-(-80)+2 B=160 \Rightarrow B=40 \\
\Rightarrow m & =e^{-t}(40 \sin 2 t-80 \cos 2 t)+80
\end{aligned}
$$

(iv) Describe the long term behaviour of m.

$$
t \rightarrow \infty \quad m \rightarrow 80
$$

(v) With reference to your answer to part (iv), comment on a limitation of the model.

Mass of crate is shewn only after ∞ time.
(vi) (a) Find the value of m that corresponds to the stationary point on the curve $m=\mathrm{f}(t)$ with the smallest positive value of t.

$$
\begin{aligned}
& m=e^{-t}(40 \sin 2 t-80 \cos 2 t)+80 \\
& \frac{d m}{d t}=e^{-t(160 \cos 2 t+120 \sin 2 t)=0} \\
& \Rightarrow t=1.107 \ldots \Rightarrow m=106
\end{aligned}
$$

(b) Interpret this value of m in the context of the mode.

The above is the maximum mass displayed.
(vii) Adapt the differential equation $\frac{\mathrm{d}^{2} m}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} m}{\mathrm{~d} t}+5 m=400$ to model the mass displayed t seconds after a
crate Y , of mass 100 kg , is placed on the scales.

$$
\frac{d^{2} m}{d t^{2}}+2 \frac{d m}{d t}+5 m=500
$$

